Wireless charging for consumer

Introducing a new cost effective system solution to ensure excellent user experience

www.infineon.com/wirelesscharging
Key enabling products for your transmitter and adapter solution:

- Low and mid voltage power MOSFETs – OptiMOS™ and IR MOSFET™
- Driver ICs – EiceDRIVER™
- Microcontrollers – XMC™
- High voltage power MOSFETs – CoolMOS™ CE/P7
- PWM/flyback controllers and integrated power stage ICs – CoolSET™
- Synchronous rectification ICs and MOSFETs – OptiMOS™

Choose Infineon to solve your application requirements:

- High performance MOSFETs, ICs and MCU at optimum price/performance ratio thanks to cost-effective packages and leading, reliable and mature silicon technology
- High power density in small designs: Enabling the lowest switching and conduction losses in smallest packages for MOSFETs and power stage
- Smallest possible package size (2 x 2, 3 x 3 half-bridge) for low power MOSFETs 30 V-250 V
- Highest efficiency: In hard switching topologies, enjoy low switching losses thanks to low input and output capacitances

Infineon is working on its own medium voltage GaN technology and will bring it to the market with a significant performance increase over silicon MOSFETs at the same level of reliability.

www.infineon.com/wirelesscharging
Wireless charging uses electromagnetic fields to transfer power from a transmitter to a receiver application to charge the according battery. This erases the need of physical connectors and cables to transfer power – one of many benefits of this technology.

The wireless charging market is dominated by two standards: inductive (Qi) and resonant (resonant AirFuel). Infineon offers solutions for both standards and is an active member of the leading wireless charging alliances the Wireless Power Consortium (WPC) and AirFuel.

Solutions from Infineon

<table>
<thead>
<tr>
<th>Various adapters/chargers</th>
<th>Wireless charging pads/sockets</th>
<th>Wireless charging receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-DC adapters</td>
<td>Transmitters (Tx)</td>
<td>Receivers (Rx)</td>
</tr>
</tbody>
</table>

Standards are required for wireless charging

<table>
<thead>
<tr>
<th>Qi (inductive)</th>
<th>Inductive AirFuel (PMA)</th>
<th>Resonant AirFuel (A4WP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz-300 kHz</td>
<td>100 kHz-300 kHz</td>
<td>6.78 MHz</td>
</tr>
</tbody>
</table>

www.infineon.com/wirelesscharging
Infineon offerings for inductive solutions (Qi & inductive AirFuel)

Adapter

Wireless charging transmitter

Transmitter (Tx)

Pre-regulators (if needed)

Half-bridge or full-bridge inverter

XMC™ microcontroller & digital control ICs

Driver

Selection coil 1

Selection coil 2

Selection coil N

Wireless charging receiver

Receiver 1 (Rx) embedded in end application, e.g. smartphone, wearable, power tool

Receiver 2 (Rx)

Receiver N (Rx)

Voltage	Package	Part number	Rds(on) (max.) @ Vgs 4.5 V [mΩ]
Inverter	30 V	SuperSO8	BSC0996NS
		BSC0993ND	7.0
	PQFN 3.3 x 3.3	BSZ0589NS	4.4
		BSZ0994NS	8.6
	PQFN 2 x 2	IRFHS8342PbF	25
		IRLHS6342PbF	15.5

Coil selection switch

Voltage	Package	Part number	Rds(on) (max.) @ Vgs 4.5 V [mΩ]
20 V	PQFN 2 x 2	IRLHS6242PbF	11.7 (= 2.5 V drive capable)
25 V		IRFHS8242PbF	21.0
30 V		IRFHS8342PbF	25.0
	PQFN 3.3 x 3.3	BSZ0994NS	8.6

Microcontroller

XMC1302 or XMC1404 or XMC4108
Infineon offerings for resonant solutions (Resonant AirFuel)

Class D – full-bridge

Please note
Class D full-bridge topology shown here, products also suitable for class D half-bridge topology

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Package</th>
<th>Part number</th>
<th>$R_{ds(on)}$ (max.) @ $V_{gs} 4.5$ V [mΩ]</th>
<th>Q_{typ}</th>
<th>$C_{os typ}$</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter 20 V</td>
<td>PQFN 2 x 2 Dual</td>
<td>IRLHS6376PbF</td>
<td>48.0</td>
<td>2.8</td>
<td>~120</td>
<td>Class D</td>
</tr>
<tr>
<td></td>
<td>PQFN 3.3 x 3.3 Dual</td>
<td>BSZ0909ND</td>
<td>18.5</td>
<td>2.0</td>
<td>220</td>
<td>Class D</td>
</tr>
<tr>
<td></td>
<td>PQFN 3.3 x 3.3</td>
<td>BSZ0506NS</td>
<td>4.4</td>
<td>5.7</td>
<td>260</td>
<td>Class D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSZ065N03LS</td>
<td>6.9</td>
<td>5.2</td>
<td>270</td>
<td>Class D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRL60HS118</td>
<td>19.0</td>
<td>4.5</td>
<td>118</td>
<td>Class D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRL80HS120</td>
<td>32.0</td>
<td>3.5</td>
<td>68</td>
<td>Class D/E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRL100HS121</td>
<td>42.0</td>
<td>2.7</td>
<td>62</td>
<td>Class D/E</td>
</tr>
</tbody>
</table>

Driver ICs
- EiceDRIVER™ 2EDL71*
- EiceDRIVER™ 1EDN

Microcontroller
- XMC1302 or XMC1404 or XMC4108

* coming soon
Infineon offerings for resonant solutions (Resonant AirFuel)

Class E – single-ended

Please note:
Class E single-ended topology shown here, products also suitable for class E differential topology

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Package</th>
<th>Part number</th>
<th>$R_{DS(on)}$ (max.) @ V_{GS} 4.5 V [mΩ]</th>
<th>Q_{t} typical</th>
<th>C_{ss} typical</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter MOSFETs</td>
<td>80 V</td>
<td>PQFN 2 x 2</td>
<td>IRL80HS120</td>
<td>32.0</td>
<td>3.5</td>
<td>68</td>
</tr>
<tr>
<td>100 V</td>
<td>PQFN 3 x 3</td>
<td>IRL100HS121*</td>
<td>42.0</td>
<td>2.7</td>
<td>62</td>
<td>Class D/E</td>
</tr>
<tr>
<td>150 V</td>
<td>BSZ900N15NS3</td>
<td>75**</td>
<td>4.1**</td>
<td>46</td>
<td>Class E</td>
<td></td>
</tr>
<tr>
<td>200 V</td>
<td>BSZ900N20NS3</td>
<td>78**</td>
<td>7.2**</td>
<td>52</td>
<td>Class E</td>
<td></td>
</tr>
<tr>
<td>250 V</td>
<td>BSZ22DN20NS3</td>
<td>200**</td>
<td>3.5**</td>
<td>24</td>
<td>Class E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSZ42DN25NS3</td>
<td>375**</td>
<td>3.6**</td>
<td>21</td>
<td>Class E</td>
<td></td>
</tr>
</tbody>
</table>

Driver ICs

| EiceDRIVER™ 2EDL71* |
| EiceDRIVER™ 1EDN |

Microcontroller

| XMC1302 or XMC1404 or XMC4108 |

* coming soon
** @VGS = 8 V
Highlight products for wireless charging

BSZ0909ND
Half-bridge handles
PQFN 3 x 3 package

IRL60/80/100
Fast switching logic level
half-bridge driver

EiceDRIVER™ 2EDL71
OptiMOS™ 5 PQFN 2 x 2 for
half-bridge and full-bridge topologies

EiceDRIVER™ 1EDN
OptiMOS™ 5 PQFN 2 x 2 for
half-bridge and full-bridge topologies

Wireless charging selection tool

This is our Infineon solution.
Please hover over each block with your mouse to see the recommended products.

- **Application**
- **Power range**
- **Standard**
- **Topology**
- **Solution**

Additiona information
For further information on technologies, our products, the application of our products, delivery terms and conditions or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings
Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.

Please note!
This document is for information purposes only and any information given herein shall in no event be regarded as a warranty, guarantee or description of any functionality, conditions and/or quality of our products or any suitability for a particular purpose. With regard to the technical specifications of our products, we kindly ask you to refer to the relevant product data sheets provided by us. Our customers and their technical departments are required to evaluate the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given herein at any time.